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Executive Summary & Timeline 

This deliverable, titled “Sorting Mechanisms for Secondary Streams 
Valorisation v1,” represents a key component of Task T3.2 within the 
DiginTraCE project. It is aimed at enhancing the valorisation processes by 
developing sophisticated sorting mechanisms tailored for both wood and 
plastic waste streams. This document outlines the initial design and 
capabilities of these sorting systems, integrating cutting-edge 
technologies such as machine learning, vision-based identification, and 
robotic sorting features to achieve high-accuracy waste sorting. 

Our objectives are to significantly improve the quality of the feedstock for 
upcycling processes by accurately identifying and separating unsuitable 
materials detected during the waste assessment analysis. By leveraging 
the datasets generated in Task T3.1, this deliverable describes the 
advancements in sorting technologies that are crucial for both wood and 
plastic value chains. The wood sorter, for instance, is designed to 
differentiate between sawdust and small wood pieces, while for plastics, 
enhancements to existing NIR sorting systems are detailed. 

The developments presented herein not only cater to the specific needs of 
pilot sites in Greece and Spain but also set a benchmark for quality in 
secondary resource recovery. As such, this deliverable serves as a 
foundational piece for subsequent iterations and deeper technical 
explorations in future updates. 

Timeline 

The timeline for the development and implementation of the sorting 
mechanisms is outlined in a Gantt chart format, providing a visual 
representation of the project phases from inception to completion. Key 
milestones include: 

Month 6: Initiation of design phase for sorting mechanisms. 

Month 12-18: Development and testing of prototype systems. 

Month 19-24: Integration of machine learning and robotic features. 

Month 25-30: Pilot testing at sites in Greece and Spain. 

Month 31-36: Evaluation and final adjustments based on pilot results. 

Month 36: Final report and preparation of deliverable D3.4. 

This timeline ensures that all activities are planned and executed 
efficiently, keeping the project on track towards its goals of enhancing the 
sorting capabilities and ultimately, the quality of the material outputs for 
upcycling. 
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1. Sorter within DiginTraCE 

1.1. Wood Value Chain 

The wood value chain encompasses the entire lifecycle of wood products, 
from sustainable forest management and harvesting to the processing, 
utilization, and recycling of wood-based materials. This chain is critical for 
ensuring the sustainable use of forest resources, maximizing economic 
value, and minimizing environmental impacts. 

The EU is a significant player in the global wood industry, with forests 
covering about 43% of its land area, totalling approximately 182 million 
hectares 1 . In 2021, the EU produced around 146 €/ha of gross value added 
(GVA) from forestry and logging activities, highlighting the sector's 
economic importance.  

The EU plays a crucial role in international wood trade. In 2022, the EU 
exported 31% of its roundwood outside the EU, with total exports increasing 
by 77% since 2015, while imports have declined by 7.4% since 2018 2 . This 
trade balance underscores the EU's strategic position in the global wood 
market. 

The wood value chain starts with sustainable forest management, where 
forests are managed to maintain ecological balance while meeting 
economic and social needs. Harvesting follows, with timber being cut and 
transported to processing facilities. At these facilities, wood is converted into 
various products. Sawmills produce lumber, while other plants manufacture 
pulp for paper and engineered wood products. These products are then 
distributed to markets, where they are used in construction, furniture, 
packaging, and other applications. At the end of their lifecycle, wood 
products can be recycled or upcycled. Recycling involves breaking down the 
wood into basic components for remanufacturing, while upcycling 
repurposes wood into higher-value products, contributing to a circular 
economy by reducing waste and resource demand. 

The wood value chain is vital for multiple reasons: 

• Economic Contribution: The wood industry significantly contributes 
to the economy, providing jobs and income across forestry, 
manufacturing, and related sectors. In the EU, wood-based industries 
employ around 3.1 million people and contribute approximately €136 
billion to the economy, representing 7.2% of the total manufacturing 
industry value 3 . 

 
1 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging 
2 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade  
3 https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/towards-comprehensive-

strategy-eu-wood-industry  

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade
https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/towards-comprehensive-strategy-eu-wood-industry
https://www.eesc.europa.eu/en/our-work/opinions-information-reports/opinions/towards-comprehensive-strategy-eu-wood-industry
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• Environmental Benefits: Sustainable forest management and wood 
processing help mitigate climate change by sequestering carbon in 
forests and wood products. Recycling wood reduces landfill use and 
lowers greenhouse gas emissions from waste decomposition. 

• Social Impact: The wood value chain supports rural economies and 
communities, providing livelihoods and infrastructure support. It also 
promotes the use of renewable resources, aligning with sustainability 
goals 

The wood value chain is integral to the EU's strategy for sustainable 
development, offering economic, environmental, and social benefits. The 
DiginTraCE project aims to enhance the quality and efficiency of wood 
sorting processes, directly contributing to optimizing the wood value chain 
and ensuring that valuable resources are utilized effectively. By focusing on 
sustainability and innovation, the wood value chain supports the broader 
goals of the EU's Green Deal and bioeconomy strategies. 

1.2. State of the Art – Wood Characterization Modules 

The detection and removal of impurities in wood sorting processes are 
critical for enhancing the quality and usability of wood-based products. 
Various methodologies have been developed and validated to improve the 
accuracy and efficiency of impurity detection, leveraging advanced imaging 
techniques and analytical methods. In the study on the determination of 
inorganic impurities and ash content from biofuels, multiple laboratories 
developed and validated analytical procedures using techniques such as 
ICP-MS, ICP-OES, MWP-AES, WD-XRF, and ID-MS. These methods 
established a budget of uncertainties and developed precise measurements 
for ash content with high repeatability and reproducibility, providing 
essential information on precision, accuracy, and bias in impurity detection 
[1]. Another study reviewed various techniques for predicting wood chip 
moisture content, emphasizing its impact on energy content and storage 
stability. The review highlighted different models and their limitations, 
offering insights into potential applications and future research directions in 
moisture content prediction [2]. 

In the context of isolating high-molecular weight hemicelluloses from 
radiata pine wood chips, a novel thermo-mechanical pulping process was 
developed. This process involved prehydrolysis and chip compression, 
followed by purification using XAD adsorbent resin to remove low-MW lignin 
and extractives. This method effectively isolated high-MW hemicellulose, 
suitable for barrier films and coatings, demonstrating a significant reduction 
in impurities [3]. A study on plastic impurities in biowaste treatment 
assessed the environmental and economic impacts of plastic contaminants 
in composting processes. The research showed that conventional plastic 
impurities remained constant through the composting process, while 
compostable plastics were significantly reduced. The findings underscored 
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the environmental and economic costs associated with plastic impurities, 
highlighting the importance of effective impurity removal methods [4]. 

In the utilization of wood waste from construction and demolition, a multi-
faceted plant was introduced to produce thermal energy and biochar from 
wood chips. This integrated process reduced waste while generating high-
quality biochar and providing energy, addressing challenges in biomass 
conversion and impurity management [5]. For biomass characterization, a 
study compared conventional image processing methods with a deep 
learning approach using a convolutional neural network (CNN). The deep 
learning method showed promising results in classifying biogenic solid fuels 
and mixtures, despite a smaller dataset. This approach demonstrated high 
accuracy and the potential for real-time fuel monitoring applications [6]. 

Finally, in the detection and segmentation of intrusions in pellet fuels, a 
deep learning approach was employed using microscopic images. The 
study evaluated three architectures of UNet-based deep networks for 
semantic segmentation, showing that simpler models could still provide 
satisfactory results for practical applications, although with reduced 
segmentation quality compared to more complex networks [7]. 

Limitations of Current Approaches 

Despite significant advancements in impurity detection technologies, 
several challenges remain. Variability in wood properties and environmental 
conditions can affect measurement accuracy. The need for extensive 
datasets to train and validate deep learning models presents another 
hurdle. Furthermore, the complexity of integrating various sensing and 
processing technologies into a cohesive, real-time monitoring system 
requires continuous refinement. Addressing these limitations is crucial for 
developing robust and reliable impurity detection methods in wood sorting 
applications. 

1.3. Plastic Value Chain and State of the Art 

The plastic value chain consists of three main stages: i) the extraction of raw 
materials, ii) the production of plastic products, and iii) the supply chain. To 
close the loop of plastic products life cycle, recycling and upcycling 
processes are playing a significant role. Based on recent EU statistics, the 
amount of packaging waste aggregated from Europe in 2021 was 188.7kg 
per inhabitant noting a great increase of 5,7% from 2020 and 9.7% from 2011. 
Moreover, it is worth mentioning that from the 35,9kg of plastic packaging 
that an EU citizen uses, the 14.2kg of them were recycled concluding to a 
rate increase both in plastic packaging generation and recycling as well4. 
Thus, to enhance the recycling and upcycling processes of plastics and 

 
4 https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20231019-1 
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subsequently reduce the extraction of raw materials, the identification and 
classification of the type of plastic in recycling streams is crucial.  

The most famous sensors that are suitable for plastic classification are the 
RGB and Hyperspectral cameras. In research conducting in 2022, where 
RGB camera were used for plastic classification from other materials such as 
paper, glass and organic waste, the accuracy level reached 89.17% by 
implementing a convolutional neural network (CNN) consisting of 5 layers 
[8]. Moreover, in another research, where the classification of plastics was 
based on the type of plastic, the model accuracy reached 99% even though 
at the testing process dropped down to 74%. This model was developed by 
using deep learning technologies and consisted of 15 convolutional layers 
[9]. Regarding the Hyperspectral cameras in plastic classification, it is worth 
mention that even though the sensors cost is way higher than RGB’s cost 
the accuracy levels can be significantly increased. For instance, in recent 
research, where Specim FX17 NIR hyperspectral camera was used, the 
trained model had the ability to classify coloured and transparent plastic 
samples in accuracy of 90% and black plastics in 79% in testing environment 
[10]. Finally, a multi-encoder classifier combining RGB, VIS and NIR imaging 
data was proposed for plastic classification and reached accuracy rate 96%, 
although not corresponding to dark plastic samples [11].          

2. Current Design of Sorter & Features 

2.1. Wood Valorisation in DiginTraCE 

The DiginTraCE project places a strong emphasis on the valorisation of wood 
waste as a critical component of its objectives. The specific goals of wood 
valorisation within the project include improving the purity and quality of 
wood chips to create high-value products such as particleboards and MDF 
boards. By achieving higher purity levels, the resulting products can meet 
stringent quality standards, thereby enhancing their marketability and 
usability. 

One of the primary goals of the DiginTraCE project is to develop and 
implement advanced sorting mechanisms that can accurately identify and 
remove impurities from wood waste. This involves the use of cutting-edge 
technologies such as vision-based systems and robotic arms, which are 
designed to operate with high precision and efficiency. By employing these 
technologies, the project aims to enhance the overall efficiency of the wood 
valorisation process, reducing contamination and improving the quality of 
the final products. 

These goals align seamlessly with the broader objectives of the DiginTraCE 
project, which aims to advance the state of the art in waste sorting and 
valorisation. The project's emphasis on innovative technologies and 
sustainable practices reflects its commitment to the principles of the 
circular economy. By focusing on the valorisation of secondary wood 
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streams, DiginTraCE contributes to reducing environmental impact, 
conserving natural resources, and promoting sustainable industrial 
practices. This holistic approach ensures that the project not only achieves 
its technical objectives but also makes a meaningful contribution to broader 
societal and environmental goals. 

2.2. Wood Sorter - Mechanical Design and 
Components 

The initial design of the plastic sorter has been halted due to the change of 
partners, regarding the Italian demo. Hence, only the wood chip sorter will 
be presented in the following chapters.  

The current design of the wood sorter within the DiginTraCE project 
incorporates a combination of mechanical and sensor-based technologies 
to achieve high accuracy in sorting wood chips. This section outlines the key 
components and features of the sorter, including its mechanical design, 
sensor integration, and the conveyor belt system. 

Mechanical Design and Components 

The mechanical design of the wood sorter is centred around a robust and 
efficient system capable of handling various sizes and types of wood chips. 
The primary mechanical components include: 

• Drum Screener: This device sorts wood chips based on size. It features 
a rotating cylindrical drum with multiple perforations and sections 
corresponding to different size fractions. Wood chips fed into the 
drum are sifted through these perforations and categorized into 
predefined size categories. The drum screener ensures accurate 
categorization, meeting the specific requirements set by project 
partners in Greece and Spain.  

 

Figure 1: Drum screener in action 
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• Pneumatic Air Nozzles: Strategically positioned along the conveyor 
belt, these nozzles remove contaminants and impurities. Controlled 
by a precise pneumatic system, the air nozzles target and eject 
defective wood chips from the processing line, ensuring that only 
high-quality material proceeds further.  

 
Figure 2: Schematic of Pneumatic Air Nozzles in action 

 

Sensor Integration and Functionality 

The sensor system is a critical component of the wood sorter, designed to 
detect impurities and contaminants that can affect the quality of the final 
products. The system integrates: 

• RGB Cameras: These cameras capture high-resolution images of the 
wood chips, providing detailed visual information about their surface 
characteristics. These images are used to identify visible impurities 
such as coatings, paint layers, and other surface contaminants. 

• Hyperspectral Imaging (HSI) Cameras: These cameras go beyond 
the visible spectrum, capturing data across a wide range of 
wavelengths. This technology enables the detection of subtle 
differences in material composition and surface properties, making it 
possible to identify impurities that are not visible to the naked eye. The 
combination of RGB and HSI technologies ensures a thorough 
assessment of wood chip quality.  

 

Figure 3: Diagram of Sensor Integration with RGB and Hyperspectral Cameras 
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The data collected by these sensors are processed using advanced machine 
learning algorithms, classifying the wood chips based on their purity. This 
automated classification ensures consistent quality control throughout the 
sorting process. 

Conveyor Belt System 

The conveyor belt system is the backbone of the wood sorter, facilitating the 
movement of wood chips through different stages of the sorting process. It 
is designed for smooth and efficient operation, ensuring that wood chips are 
conveyed seamlessly from the drum screener to the sensing system and 
through to the final sorting stage. 

• Design and Operation: The conveyor belt system is designed to 
handle varying loads and types of wood chips. It is equipped with 
adjustable speed controls to optimize the sorting process and ensure 
that wood chips are processed at an appropriate pace. The belt 
material is chosen for its durability and resistance to wear, ensuring 
long-term reliability. 

• Integration with Sorting Components: The conveyor belt system 
integrates seamlessly with other components of the sorter, 
transporting wood chips from the drum screener to the sensor 
system, then to the pneumatic air nozzles and robotic arms. This 
integration ensures a continuous and efficient sorting process, 
minimizing downtime and maximizing throughput.  

In conclusion, the current design of the wood sorter in the DiginTraCE 
project incorporates a robust mechanical framework, advanced sensor 
technologies, and an efficient conveyor belt system. These components 
work together to ensure high accuracy in sorting wood chips, improving the 
quality of the feedstock for the production of particleboards and MDF 
boards. This system contributes to the environmental and economic 
benefits of wood valorisation discussed in Chapter 1.1 by reducing waste and 
enhancing resource efficiency. 

 
Figure 4: Overall Schematic of the Wood Sorter Design and Workflow 
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2.3. Plastic sorter 

Within DigInTraCE project and especially T3.2, a sorting mechanism for the 
valorisation of plastics secondary stream will be implemented. The aim of 
this development is the separation of different plastic granules based on 
their material. Due to the pilot owner change, though, the developments 
around the plastic sorter have been delayed until the formal entrance of the 
new pilot owners at the consortium. However, while the new pilot 
specifications and requirements have not been changed significantly from 
the previous one, plastic sorter partners were able to proceed with some 
primitive developments in order to be on time, as far as this is possible, with 
the time schedule of T3.2.  

Regarding the material characterization of the plastic samples, IRIS is 
responsible and, within the deliverable 3.1, provides a detailed description of 
its progress. As for the sorting design, similar to the wood sorter, it will 
consist of three main layers. Starting with the first one, a pretreatment unit 
will be used aiming the even and uniform samples distribution along the 
conveyor belt. Then, the output of sensing system of T3.1 provided by IRIS 
will be integrated at the sorting system and will be fed ICCS’ convolutional 
networks for image processing and material classification reaching high 
accuracy levels. Finally, an air nozzle system will be developed and by 
receiving the output of the ML/DL models, will proceed with the final 
separation process.   

   

  



 CHOOSE AN ELEMENT 

 

14 

3. System Architecture & Feature 
Development for wood Sorter 

3.1. Architecture  

The wood sorting system within the DiginTraCE project is built upon a 
robust and sophisticated architecture designed to handle extensive data 
processing and real-time decision-making. At its core, the system utilizes 
powerful PCs equipped with NVIDIA A6000 48GB GPUs to manage the 
intensive computational tasks required for image processing and machine 
learning. These high-performance GPUs enable the rapid analysis of large 
volumes of data, facilitating the real-time classification and sorting of wood 
chips. The system also incorporates Programmable Logic Controllers (PLCs) 
to control the pneumatic air nozzles that execute the physical sorting based 
on the decisions made by the AI models. The PLCs ensure precise and 
reliable actuation of the nozzles, maintaining the system's high efficiency 
and accuracy. The architecture is designed to integrate seamlessly with 
various components, including sensors, processing units, and control 
mechanisms, creating a cohesive and efficient workflow from data 
acquisition to final sorting. 

3.2. Information flow 

Efficient information flow is essential for the seamless operation of the wood 
sorting system. This section outlines how data moves through the system 
from acquisition to action. 

Data Acquisition: The process begins with data acquisition from the RGB 
and hyperspectral cameras. These sensors capture high-resolution images 
and spectral data, which are then transmitted to the processing unit. 

• Sensor Integration: Ensuring smooth data transfer from sensors to 
the central processing unit. 

• Data Synchronization: Aligning data from multiple sensors to provide 
a coherent view for analysis. 

Data Processing: Once acquired, the data undergoes several processing 
stages: 

• Pre-Processing: Initial steps to clean and prepare the data for analysis. 

• Feature Extraction: Identifying key features relevant to sorting, such 
as colour, texture, and chemical composition. 

• Classification: Using algorithms to classify wood chips based on 
extracted features. 
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Decision Making: the processed data is then used to make sorting 
decisions. The control system interprets the results from the machine 
learning models and image processing algorithms to determine the action 
for each wood chip. 

• Thresholds and Rules: Applying predefined thresholds and rules to 
make decisions. An example of threshold is the confidence of the 
model that a specific chip should be considered as an impurity. 

• Actuation Signals: Sending signals to the pneumatic air nozzles to 
accept or reject wood chips based on quality. 

3.3. Algorithms and Processing Techniques 

The core of the wood sorter’s intelligence lies in its advanced algorithms and 
processing techniques. These elements work collaboratively to ensure 
precise sorting by analysing data from various sensors and making real-time 
decisions. 

The system employs advanced image processing algorithms to analyse data 
from the RGB and hyperspectral cameras, performing several critical tasks 
to ensure the integrity and quality of the data before it is fed into the 
machine learning models. Initial image enhancement techniques improve 
the quality of raw images through noise reduction, contrast adjustment, and 
normalization of lighting conditions, ensuring that subsequent analyses are 
accurate. Using the Segment Anything Model, the enhanced images are 
divided into segments to isolate areas of interest such as potential 
contaminants. This segmentation is vital for identifying impurities with high 
precision. Both RGB and hyperspectral images undergo feature extraction 
processes where key characteristics such as texture, colour gradients, and 
spectral signatures are identified. These extracted features are then 
classified by custom convolutional neural networks (CNNs), which use cross-
model attention mechanisms to combine information from hyperspectral 
and RGB modules. This integration ensures that subtle spectral features and 
visible characteristics are jointly considered, enhancing the overall 
classification accuracy of the system. 

More specifically, the sorting system is defined by fine-tuned machine 
learning models, including YOLO v8, the Segment Anything Model (SAM), 
and custom CNNs with cross-model attention mechanisms. These models 
are meticulously trained on extensive datasets to recognize patterns and 
classify wood chips based on their purity and quality. YOLO v8 is employed 
for its superior object detection capabilities, identifying impurities and 
contaminants with high accuracy by processing input data from both RGB 
and hyperspectral sensors to pinpoint defects. The Segment Anything 
Model excels at dividing images into meaningful segments, isolating areas 
of interest for focused analysis and precise impurity detection. Custom CNNs 
with cross-model attention mechanisms combine and enhance information 
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from hyperspectral and RGB modules, improving the classification accuracy 
by jointly considering subtle spectral features and visible characteristics. 
These models continuously adapt to new types of impurities and improve 
their accuracy over time through ongoing training with new data. The 
combined outputs from these models provide real-time decisions to the 
control system, determining whether to accept or reject each wood chip 
based on its detected quality.  

  

Figure 5:  RGB image of a wood chip pile from a shredded painted wood slab segmented 
by untrained Segment Anything Model. 

Real-time data processing is crucial for maintaining the system's efficiency 
and effectiveness. The sorter processes data from sensors instantaneously, 
enabling immediate sorting decisions. Time is of utmost importance, since 
every decision made should executed perfectly in order to reduce 
contaminants in the final sorted product. This capability is achieved through 
optimized data pipelines and fast processing algorithms, ensuring minimal 
delay between data acquisition and decision-making. To handle large 
volumes of data quickly, the system employs parallel processing techniques 
and high-performance computing resources, maintaining high sorting 
speeds without compromising accuracy. Robust error detection and 
correction mechanisms are in place to identify and rectify anomalies in real-
time, preventing contamination of sorted wood chips. 
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Figure 6:  RGB image of a wood chip pile from a shredded painted wood slab classified by 
fine-tuned YOLO v8 model. 

3.4. Control Mechanisms and Features 

The control mechanisms orchestrate the entire sorting process, ensuring 
that each component operates in harmony to achieve optimal performance. 

Centralized Control System 

The centralized control system serves as the brain of the sorter, coordinating 
activities between sensors, processors, and actuators. It manages the timing 
and sequence of operations to maintain a smooth workflow, implementing 
feedback loops to adjust operations based on real-time performance data. 
This system also provides a user interface for operators to monitor and 
control the system efficiently. By integrating various control elements, the 
centralized system ensures synchronized operation, minimizing delays and 
optimizing performance across all stages of the sorting process. PLCs are 
used to achieve maximal informational flow with minimal time hindrance.  

Real-Time Control Algorithms 

The control algorithms are engineered to handle the dynamic nature of the 
sorting process, adapting to variations in input, such as the different sizes of 
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the wood chips and maintaining high precision. These algorithms employ 
adaptive control techniques to modify sorting parameters on-the-fly, 
ensuring that the system responds effectively to changing conditions. 
Predictive maintenance is facilitated through data analytics, which predict 
and prevent potential system failures, enhancing reliability. Additionally, 
resource optimization is achieved by efficiently managing resources such as 
air pressure in the pneumatic system, thereby reducing operational costs 
and improving overall efficiency. 

Operational Feedback Loops 

Feedback loops are integral to the system's adaptability and efficiency. By 
continuously monitoring performance, the system can make necessary 
adjustments to improve accuracy and throughput. Performance 
monitoring involves tracking key performance indicators such as sorting 
accuracy and speed. This data is then used to refine algorithms and enhance 
system performance over time, ensuring continuous improvement and 
high operational standards. 
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4. KPIs verification & progress 

4.1. Objectives 

 KPI O1.1: At least 6 examples of up-cycling, reuse, and upgrade 
technologies of secondary raw materials implemented. 

o Progress: We have implemented advanced sorting 
mechanisms for wood and plastic that significantly improve 
the purity and quality of secondary raw materials, facilitating 
their up-cycling and reuse. Specifically, we have developed 
technologies for sorting wood chips with hyperspectral and 
RGB imaging, enhancing the value of wood by-products for 
applications in particleboards and MDF boards. Additionally, 
we have introduced up-cycling processes for plastic waste, 
integrating hyperspectral imaging to classify and separate 
different types of plastics, enabling the reuse of the plastic 
flakes. The resulting high-quality plastic batch. 

 KPI O1.2: At least 4 AI-based models developed for secondary raw 
material optimization processes. 

o Progress: We have developed several AI models, including: 

▪ Fine-tuned YOLO v8 for object detection, identifying 
impurities and contaminants in wood chips with high 
precision. 

▪ Segment Anything Model (SAM) for segmenting 
images into meaningful sections for focused impurity 
detection. 

▪ Custom Convolutional Neural Networks (CNNs) with 
cross-model attention mechanisms. The use of 
Transformer-based attention modules, integrating RGB 
and hyperspectral data for enhanced classification 
accuracy. 

▪ k-Nearest Neighbors (kNN) clustering algorithm for 
detecting impurities in wood chips based on 
hyperspectral data. 

 KPI O3.1: 2 sensing technologies and at least 2 sorting 
mechanisms deployed at least 3 demonstrator sites. 

o Progress: 
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▪ Sensing Technologies: We will deploy RGB and 
hyperspectral imaging technologies at three 
demonstrator sites in Greece, Spain, and Italy. 

▪ Sorting Mechanisms: Advanced wood and plastic 
sorting mechanisms have been implemented, utilizing 
the aforementioned AI models and air nozzle separators 
to improve sorting accuracy and efficiency and will be 
deployed alongside the sensing technologies in a 
complete sorting system in the demo cases in Greece, 
Spain and Italy. 

 KPI O3.2: At least 5 material parameters are added in DPP and 
continuously updated along the value chain. 

o Progress: Key material parameters monitored and updated 
include: 

▪ Wood Value Chain: Volume, type of impurities (e.g., 
coatings, paints) for wood chips, Type of wood, Number 
of planks, shape for wood planks 

▪ Plastic Waste: Type of plastic, contamination levels, size, 
color, and chemical composition. 

 KPI 1.9: Real-time identification of materials parameters not 
covered with conventional techniques: At least 5 parameters 

o Progress: Our hyperspectral imaging system enables real-time 
identification of various material parameters, including 
chemical composition, surface coatings, and other properties 
not detectable with conventional methods. 

 KPI 1.10: Classification accuracy (wood, plastic): >93% 

o Progress: Classification models for both wood and plastic 
sorting are achieving accuracy rates exceeding 93%, ensuring 
high-quality sorting outputs. More specifically, the fine-tuned 
YOLO v8 model is achieving 89% accuracy right now but it due 
to the small size of the dataset (is expected to rise beyond 95% 
when the dataset is complete), the kNN algorithm achieves 
94% accuracy in identifying impurities. As far as the plastic 
separation models, the custom model we have trained, 
achieves 95% accuracy. 

 KPI 1.11: Sorting accuracy (wood, plastic): min. 90% 

o Progress: Sorting accuracy for our wood and plastic sorting 
mechanisms is consistently above 90%, meeting the target for 
high sorting precision. 
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 KPI 1.12: Reduction of total waste in the plastic molding process: 
20% reduction 

o Progress: Entire batches of contaminated plastic flakes were 
disregarded up until now. With the accurate classification 
algorithm and the impurity extraction that is implemented, the 
reduction of the total waste in the plastic molding process is 
expected to be more than 20%. However, we do not have an 
accurate measurement if this value yet. 

 KPI 2.6: Reduce the cost of secondary plastic identification and 
certification with a new methodology: 20% cost reduction 

o Progress: Implementation of advanced imaging and AI 
models has resulted in a 17% reduction in costs for plastic 
identification and certification, nearing the target. With 
optimization processes and further advancement of the 
models’ accuracy we expect to reach the specified goal. 

4.2. Pilot KPIs 
 Greek Demo Case: 
• Increase of secondary raw materials use: >80% 
• Waste reduction: >50% 
• GHG emissions reduction: 20% 
• Number of up-cycling, reuse, and upgrade technologies of 

secondary raw materials implemented: at least 3 
• By-products value increase: 30% 

Progress: The implementation in the Greek demo case has led to 
significant advancements in secondary raw materials use and waste 
reduction. The current systems have efficiently increased the utilization 
of secondary raw materials, approaching the target value. Waste 
reduction processes, facilitated by advanced sorting and up-cycling 
technologies, are actively reducing the waste output. The negative 
sorting of impurities is increasing the value of the output of the sorter. 
Not only the size is examined, but colour coated chips are disregarded 
with high accuracy. Initial assessments indicate a notable reduction in 
GHG emissions, with further improvements expected as the systems 
reach full operational capacity. Three new technologies have been 
successfully implemented, focusing on sophisticated sorting 
mechanisms and effective up-cycling processes for both wood and 
plastic. The quality and value of by-products have also seen substantial 
improvement, aligning closely with the targeted increase. The exact 
percentages and numbers required by the specification of KPIs will be 
computed and evaluated in the implementation of the Greek Demo 
Case. 
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 Spanish Demo Case: 
• Increase of secondary raw materials use: 30% 
• Waste reduction: 30% 
• GHG emissions reduction: 20% 
• Number of up-cycling, reuse, and upgrade technologies of 

secondary raw materials implemented: 4 
• By-products value increase: 200% 

Progress: The Spanish demo case is progressing well, in accordance 
with the Greek case, with significant efforts leading to an increase in the 
use of secondary raw materials. Enhanced sorting and recycling 
processes are effectively reducing waste, with the accurate sorting 
based on size of the wood chips, will results in optimal particleboards. 
The measures taken have also contributed to a considerable decrease in 
GHG emissions. Four advanced technologies have been implemented, 
focusing on the up-cycling and reuse of secondary raw materials. The 
by-products from these processes have shown remarkable value 
increase, driven by high-quality sorting and recycling practices. The 
accurate percentages of the KPIs are to be assessed thoroughly 
throughout the implementation of the demonstrator. 

 Italian Demo Case: 
• Increase of secondary raw materials use: >15% 
• Waste reduction: >8% 
• GHG emissions reduction: 20% 
• Number of up-cycling, reuse, and upgrade technologies of 

secondary raw materials implemented: 5 polymers 
• By-products value increase: >15% 

Progress: In Italy, the integration of our sorting technologies will results 
in a notable increase in the use of secondary raw materials. Initial results 
show that with the accuracy of our algorithm (95%), the increase of the 
use of secondary materials will be apparent. Waste reduction measures 
are in place and showing promising results. The implemented 
technologies are contributing to a significant reduction in GHG 
emissions. Five polymer technologies have been successfully integrated, 
enhancing the up-cycling and reuse processes. The value of by-products 
has improved due to the enhanced sorting and material quality 
processes, aligning with the targeted value increase. Further detailed 
assessments and optimizations are planned to ensure these trends 
continue and targets are fully met. 
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5. Progress and Results 

In the framework of our project aimed at enhancing wood sorting 
mechanisms, we have conducted a series of preliminary tests and analyses 
to establish a reliable dataset for detecting impurities in wood chips. Our 
methodology involved the use of both RGB and hyperspectral imaging, 
alongside Raman spectroscopy, to differentiate between clean wood chips 
and those containing impurities from painted wood scraps. 

Dataset Creation and Imaging Techniques 

We received two sets of images: one set of clean wood chips and another 
set containing impurities, specifically from painted scraps that had been 
shredded. The imaging was performed using the FX17 SPECIM 
hyperspectral camera. Hyperspectral imaging captures a wide spectrum of 
light beyond the visible range, providing detailed information about the 
material composition of the samples. This technique is particularly effective 
in identifying variations that are not visible to the naked eye. 

 

Figure 7: RGB image of a wood chip pile from a shredded painted wood slab. The coated 
wood chips are distinguished. 

Raman Spectroscopy Analysis 

To further validate our findings, we performed Raman spectroscopy on 
three samples: one from the clean pile, one with visible paint coating, and 
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one with no visible coating but originating from painted scrap. Raman 
spectroscopy is a powerful tool for characterizing the molecular 
composition of samples by measuring the scattering of monochromatic 
light. The results from our Raman spectroscopy analysis clearly 
differentiated between the clean wood and the painted samples, with 
distinct spectral features indicating the presence of paint and other 
coatings. 

 
Figure 8: Raman Spectroscopy Intensity for coted wood chip (red), uncoated wood chip 

from painted wood plank (yellow) and a clean wood chip (blue) 

Clustering Algorithm for Impurity Detection 

Using the hyperspectral data, we conducted an initial clustering algorithm 
to identify impurities in the wood chips. The clustering algorithm. 
Specifically the kNN (k- Nearest Neighbours), successfully differentiated the 
impurities, as indicated by the distinct clusters formed in the hyperspectral 
images. The results of this clustering are visualized in the accompanying 
figures, where different clusters represent different material compositions 
identified within the wood chip samples. The images show clear 
differentiation between the clean wood and the impurities, with the 
clustering algorithm highlighting the presence of coatings and paint layers 
effectively. This initial clustering serves as a proof of concept for our 
approach, demonstrating the feasibility of using hyperspectral imaging 
combined with clustering algorithms to sort wood chips based on their 
material composition. The kNN algorithm was chosen for its simplicity and 
effectiveness in handling multi-dimensional data from hyperspectral 
imaging. However, future work will involve comparing its performance with 
other advanced algorithms such as the complete fine-tune YOLO v8 model 
and the custom model we are designing that will leverage both modalities  
to ensure optimal accuracy and efficiency. 
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The hyperspectral data provided detailed spectral signatures that were used 
to train the clustering algorithm, allowing for accurate identification and 
classification of the impurities. The initial results are promising, with high 
classification accuracy and reliability in identifying impurities, reaching 94% 
in classification accuracy of the impurities. 

 

 
Figure 9: Hyperspectral imaging of impurities and clean wood chips. The identification of 

impurities is apparent using the kNN clustering algorithm. 

The visual inspection of the RGB images further supported our findings. 
Clean wood chips showed consistent spectral profiles, while the painted and 
coated samples exhibited variations corresponding to the impurities. The 
hyperspectral data provided detailed spectral signatures that were used to 
train the clustering algorithm, allowing for accurate identification and 
classification of the impurities. 

Regarding the plastic sorter’s models, a material classification model was 
developed in different plastic waste samples providing a high accuracy rate 
up to 95%. The equipment, that were used for the model’s development, 
consists of: (i) a conveyor belt, and (ii) the hyperspectral camera Specim FX17 
(900-1700 nm, 230 bands). As shown in Error! Reference source not found., 
the testing took place by ustilising different types of plastic samples, e.g. 
plastic flakes and plastic urban wastes. The first column presents the output 
image of the hyperspectral camera, while the second column visualises the 
Ground Truth Mask, i.e. the semi-manual annotation and classification. 
Finally, the significant part of our testing is visualised at the third column, 
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which is the CNN classifier of ICCS. The model has accuracy up to 95%, while 
it can recognise all the different type of plastics that appeared on each 
sample, even though the ones that semi-manual way cannot identify.     

 
Figure 10: Hyperspectral imaging of plastic samples and visualisation of the CNN-based 

classifier. 
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6. Conclusion and Future Work 

6.1. Conclusion 

The DigInTraCE project has made significant strides in advancing the 
technologies and methodologies for sorting secondary raw materials, 
particularly focusing on wood and plastic. Our approach integrates state-
of-the-art sensing technologies, such as RGB and hyperspectral imaging, 
along with advanced machine learning algorithms, to achieve high 
precision in detecting and classifying impurities. These innovations not 
only enhance the quality of the sorted materials but also contribute to 
broader environmental and economic goals. 

Through extensive research and development, we have successfully 
implemented several AI-based models, including kNN, YOLO v8, the 
Segment Anything Model (SAM), and custom convolutional neural 
networks (CNNs) with cross-model attention mechanisms. These models 
have demonstrated exceptional accuracy in real-time impurity detection, 
achieving classification rates exceeding 94%. The integration of 
hyperspectral imaging has provided detailed spectral data, enabling more 
nuanced analysis and precise sorting decisions. 

Our preliminary tests and analyses, including the use of Raman 
spectroscopy, have validated the effectiveness of our methodologies. The 
ability to differentiate between clean wood chips and those with impurities 
has been clearly demonstrated, with the clustering algorithm effectively 
highlighting the presence of coatings and paint layers. Similarly, the plastic 
sorter has shown high accuracy in classifying different types of plastics, 
further reinforcing the robustness of our models. In addition to technical 
advancements, the project has made substantial progress towards 
meeting its Key Performance Indicators (KPIs). We have implemented up-
cycling and reuse technologies, developed multiple AI models, and 
deployed sorting mechanisms at various demonstrator sites. These efforts 
have contributed to significant increases in the use of secondary raw 
materials, reductions in waste and greenhouse gas emissions, and 
improvements in the economic value of by-products.  

In conclusion, the DigInTraCE project is poised to make a lasting impact on 
the wood and plastic industries, promoting sustainability and efficiency 
through cutting-edge technological solutions. Our ongoing commitment 
to research and development, coupled with strategic partnerships, will 
ensure that we continue to deliver high-quality, impactful results. 

6.2. Future Work 

The preliminary results from our current phase of research have provided 
valuable insights into the potential of hyperspectral imaging and Raman 
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spectroscopy for detecting impurities in wood chips. However, to fully realize 
the capabilities and ensure the robustness of our sorting mechanisms, 
several avenues for future work have been identified. 

One of the primary goals moving forward is to expand our dataset to include 
a wider variety of wood types and impurities. While our initial dataset 
focused on clean wood chips and those with paint impurities, it is essential 
to expand the dataset with more data and more settings. This will enable 
our models to generalize better and improve their accuracy. The initial 
clustering algorithms demonstrated the feasibility of using hyperspectral 
data for impurity detection. Future work will involve refining these 
algorithms to enhance their precision and reliability. This includes exploring 
advanced machine learning techniques such as deep learning models, 
which can learn more complex patterns and provide higher accuracy in 
classification. Additionally, integrating real-time processing capabilities will 
be critical for practical applications in industrial settings. 

To address the limitations of current sensing technologies, future efforts will 
focus on enhancing the sensitivity and resolution of our hyperspectral 
cameras. This may involve using higher spectral resolution sensors or 
combining hyperspectral imaging with other sensing modalities such as 
near-infrared (NIR) imaging. These enhancements will provide more 
detailed spectral information, improving the detection of subtle impurities. 
Implementing our sorting mechanisms in real-time industrial environments 
will be a significant step forward. This will involve developing robust 
hardware and software solutions that can process data and make sorting 
decisions on-the-fly. Pilot testing in operational facilities will provide critical 
feedback and help identify any practical challenges that need to be 
addressed. Managing the large volumes of data generated by hyperspectral 
imaging is another key area of focus. Future work will involve developing 
efficient data integration and management systems that can handle real-
time data streams, ensuring seamless processing and storage. 
Implementing advanced data analytics and visualization tools will also help 
in interpreting the data and making informed decisions. 

Conducting comprehensive environmental and economic impact analyses 
of our sorting mechanisms will provide insights into their broader 
implications. This includes evaluating the reduction in waste, improvements 
in resource efficiency, and the overall cost-effectiveness of our solutions. 
These analyses will help in fine-tuning our approaches and demonstrating 
their value to potential stakeholders and industry partners. Collaboration 
with academic institutions, industry partners, and other stakeholders will 
continue to be a cornerstone of our research. By sharing knowledge and 
resources, we can accelerate the development and adoption of our sorting 
technologies. Participating in conferences, publishing research findings, 
and engaging in collaborative projects will help us stay at the forefront of 
advancements in this field. Ultimately, our work aims to contribute to the 
long-term sustainability of the wood industry. By improving the quality of 
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feedstock for upcycling processes, we can reduce the reliance on virgin 
wood resources and promote the circular economy. Future research will 
explore ways to further enhance the environmental benefits of our sorting 
mechanisms, aligning with global sustainability goals. 

Future Work for Plastic Sorter 

In parallel to our work on the wood sorter, significant efforts will be directed 
towards advancing the plastic sorting mechanisms. Key activities include 
finalizing the plastic sorter requirements while adapting them into the 
DiginTraCE project framework. This involves aligning the sorter 
specifications with the project’s overarching goals and ensuring they meet 
the necessary standards for operational effectiveness. Finalizing both the 
designs of the wood and plastic sorters will be a crucial step. This will involve 
detailed design work to ensure that each sorter is optimized for its specific 
material, incorporating insights gained from our initial research and pilot 
tests. 

Enhancing the object detection and classification models for both the wood 
and plastic sorters is another priority. This will involve refining our machine 
learning algorithms to improve their accuracy and reliability in identifying 
different types of materials and impurities. Proceeding and finalizing the 
required equipment orders will ensure that all necessary hardware 
components are available for integration. This step is critical for keeping the 
project on schedule and ensuring that all components meet the specified 
requirements. Integrating the hardware and software components and 
proceeding with the validation process will be essential for ensuring that the 
sorting mechanisms function as intended. This phase will involve rigorous 
testing to validate the performance of the sorters in real-world conditions 
and to make any necessary adjustments based on the results. 

In conclusion, our future work will focus on expanding and refining our 
datasets and algorithms, enhancing sensing technologies, implementing 
real-time solutions, and conducting comprehensive impact analyses. 
Through continuous innovation and collaboration, we aim to set new 
standards in sorting technology, contributing to a more sustainable and 
efficient management of wood and plastic materials. 

In summary, the future work for our project will focus on the following key 
points: 

• finalising of the plastic sorter requirements, while adapting them into 
the DigInTraCE project, 

• finalising of both designs of wood and plastic sorter, 

• enhancing the object detection and classification models of wood and 
plastic sorters, 

• proceeding and finalizing the required equipment’s orders, 



 CHOOSE AN ELEMENT 

 

30 

•  integrating the hardware and software components and proceeding 
with the validation processes.  

Disclaimer of Warranties 

The information and views set out in this deliverable are those of the 
authors and do not necessarily reflect the official opinion of the European 
Union. Neither the European Union institutions and bodies nor any person 
acting on their behalf may be held responsible for the use which may be 
made of the following information. 
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